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Abstract—The time response of wall transfer probes may significantly affect the interpretation of the
physical phenomena involved. The transfer function between the heat or mass flux at the probe surface
and the wall shear is analysed in the frequency domain. Space variation induced by the finite propagation
velocity of a fluctuating wall shear is considered, as frequently encountered in various two-phase flow
systems. The analysis indicates that the response is determined by two parameters—the non-dimensional
frequency and the non-dimensional fluctuation velocity. The amplitude and phase corrections, which are
to be applied to pseudosteady model calculations are numerically calculated. It is found that as the wall
shear fluctuation is slowed down the probe frequency response significantly deteriorates. The sensitivity of
the response to the fluctuation velocity reduces as the Prandtl or Schmidt numbers increase, indicating a
superiority of electrochemical probes over themal probes.

1. INTRODUCTION

THE INFORMATION about the variation of the local and
instantaneous wall shear stress is often found to be
useful in analysing various single and two-phase flows.
The development of small, flush mounted wall trans-
fer probes, capable of measuring the instantaneous
heat or mass transfer rates, offers the opportunity of
obtaining insight on the flow characteristics in the
near wall region. However, meaningful and successful
interpretation of experimental data depends, in a very
critical manner, on the knowledge of the dynamic
behaviour or transfer function of the measuring device
used.

The mass transfer probe is based upon the diffusion
controlled electrolysis technique, developed by Reiss
and Hanratty [1]). The surface of the probe forms an
electrode which is maintained at a constant (zero)
concentration and the mass transfer rate is determined
by measuring the current in the electrolysis cell. With
heat transfer probes, the instantaneous transfer rates
at the wall are obtained by measuring the heating
power required for maintaining a constant probe
temperature.

Various experimental and theoretical aspects con-
cerning the application of wall transfer probes have
been reviewed by Hanratty and Campbell [2]. These
probes have been used extensively in experimental
studies of single phase flows, for example, the studies
of turbulent wall shear fluctuation in steady and pul-
sating pipe flows [3-7]. In studies of two-phase flows
these probes have been used to measure the average
wall shear, as well as the magnitude and direction
of the fluctuation induced by the wavy gas-liquid
interface [8-15].

It is by now well established that a significant error

can arise in interpreting data concerning a fluctuating
wall shear due to the capacitance effect of the con-
centration or thermal boundary layers. Only for a
slowly varying velocity field, can a pseudosteady state
assumption be made, whereby the instantaneous mass
transfer coefficient and the instantaneous velocity
gradient are related by steady flow model equations.
Asymptotic solution for the frequency response of
the transfer rates at the wall to a uniform (in space)
fluctuating wall shear, in the limits of high and low
frequencies, have been presented by Lighthill [16] and
Bellhouse and Schultz [17]. Fortuna and Hanratty [18]
and later, Mao and Hanratty [19] obtained numerical
results for the corrections which are to be applied to
the pseudosteady state solution when a wall shear
fluctuation of an arbitrary frequency is concerned.
The effect of accounting for the diffusion in the axial
direction on the probe frequency response was
recently studied by Ambari ez al. [20]. These studies
show that the use of the pseudosteady state assump-
tion always introduces an error in the determination
of the instantaneous wall shear stress. Moreover, the
larger the Schmidt or Prandtl numbers the lower the
probe cut-off frequency. Hence, a detailed knowledge
of the probe frequency response is essential for its
meaningful application.

The above-mentioned frequency response studies
[16-20] are based on the assumption of a uniform flow
field, whereby no space variation in the average wall
shear or in its fluctuation are allowable. Indeed, the
assumption of uniform fluctuation in space does not
introduce any limitation for the applicability of the
analysis to pipe flow oscillations induced by pressure
waves. In studies of two-phase flows, however, the
wall shear oscillations are strongly related to the
mobile interfacial waves. Here, space variation of the
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amplitude ratio, equation (21)
non-dimensional wave celerity
non-dimensional temperature or
concentration

fluctuating component of F

fluctuation amplitude

relative fluctuation, f5/s

gravitational acceleration [m s~ 7]

film thickness [m]

transfer coefficient {m s~ ']

steady state transfer coefficient [m s~ ]
fluctuating component of transfer
coefficient [m s~ ']

amplitude of k [m s~ ']

amplitude of & for pseudosteady solution
[ms™']

length of transfer element [m]
non-dimensional length of transfer
element, Lu*/v

Schmidt number or Prandtl number, v/a
pressure [N m~?]

film Reynolds number, 41"/u

velocity gradient at the wall [s™ ']

time average of S[s™']

fluctuating component of S [s™']
amplitude of s [s 7]

temperature [°C]

time

non-dimensional disturbance propagation
velocity, equation (14)

average film velocity fm s~ ]

axial velocity [m s™ ']

friction velocity, (vS)"? [m s~ ']
perturbation propagation velocity [m s~ ']
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NOMENCLATURE

v perpendicular velocity component m s ']

W  non-dimensionless frequency, w*L**?

X  dimensionless downstream distance,
equation (8)

x  downstream distance [m]

Y  non-dimensional distance perpendicular to
the wall

y distance perpendicular to the wall [m].

Greek symbols

diffusivity of mass or heat [m?s™']
film flow rate [kgm~"'s™ 1}

boundary layer thickness [m]

similarity variable defined in equation (10)
phase (lag or lead) of k relative to §
wavelength [m]

viscosity (kg m™"' s

kinematic viscosity [m?* s~ ']

film interfacial shear [N m~?

pressure drop factor, Table 1

angular velocity [rad s~ "]
dimensionless angular velocity,
equation (14)

w* dimensionless angular velocity, wv/u*?,

*

2860 TR NS MR

Subscripts
b bulk
S pseudosteady model, or sheared interface
w  wall

Superscripts

time average

fluctuation amplitude

+ non-dimensionalized by u* and v.

fluctuating wall shear may be of importance in eval-
vating the probe frequency response, and therefore,
may affect the interpretation concerning the ampli-
tude and phase relations between the wall shear and
the passing-by interfacial wave.

It is therefore the purpose of the present study to
extend the frequency response analysis of wall transfer
probes to a propagating wall shear fluctuation.

2. THE GOVERNING EQUATIONS

The problem of interest is the unsteady heat or
mass transfer to a two-dimensional small wall element
(probe) aligned with its long side, w, perpendicular to
the direction of the mean flow. The conditions at the
probe surface are controlled so that it is maintained
at a constant temperature, 7, (or constant con-
centration, C,), which differs from that in the bulk
oncoming fluid (7, or Cy). For sufficiently wide probes
(w> L), the temperature or concentration in the
developing boundary layer is governed by the

unsteady two-dimensional conservation equations

MLy 1
ax oy (
OF OF oF  (3F 0F ,
a T T TG T 2

where F stands for either the non-dimensional tem-
perature (=(T-T,)/(T,—T,)) or concentration
(=(C—-C)/(C,—Cy)), « is the fluid (thermal or
mass) diffusivity, y the distance from the wall and x the
distance in the mean flow direction, as schematically
described in Fig. 1. The relevant boundary conditions
are

F(+o,y,t) = F(x,00,1) =1

F(x,0,)=0; 0<x<L

oF 0,0)=0; 0; L 3
ay(x, ,)=0; x<0; x>0L 3)
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U=S(x,t)y

Fi1G. 1. Schematic description of a wall transfer probe.

If the probe length is small enough, the concentration
or thermal boundary layer which develops over it will
be so thin, that the velocity field is well described by

148

= Dy, v=—-7y° 4
u=S8(x1y; v 257 @
where S is the velocity gradient at the wall. The vel-
ocity gradient at the wall and the resulting tem-
perature (or concentration) are expressed as a sum of

steady and fluctuating terms

S(x, ) = Sx)+s5(x,8); F(x,1) = F(x)+f(x,1).
(5)

Note that the perpendicular velocity v, which has been
ignored in previous studies [18, 19], is retained here,
since spacial variation of the wall shear is to be con-
sidered, s = s(x, ?). For a steady uniform flow field
8§ = const., and the substitution of equation (5) into
equations (2)~(4) yields for the steady field, F

. OF 0’F  8*F
Sya—a<5}7§+a—;> 6)
F(x,00) = F(+0,y) =1 (6a)
F(x,00=0; 0<x<L (6b)
g(x,0)=0; x<0; x>L (6¢c)
and for the fluctuation term, f
of = o 1 ,0s0f a*f &
RS T M e
1 ,0s OF oF
Y axey Y M
f(xoo,y,0)=f(x,0,0)=0 (7a)
f(x,0,)=0; 0<x<L (7b)
a—f(x,O,t)=0; x<0; x>1 (7c)
dy
In terms of the non-dimensional variables
*
X=x/L=x*|L*; L*= £‘:l—; u* = (v9)"?
N\ yu*
-yt . + 7. —
Y=y <L+) S & 5 N=v ®)
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equation (6) reads
oF o*F 1 9*F
Yox=av: T WL ax @

Note that N is either the Schmidt number or the
Prandtl number. For N¥3L*%3 » 1 the diffusion in
the main flow direction may be neglected, and the
(steady state) solution of equation (9) reads [1]

1 n

F_(473_5 OC_Z dZ; n= Y/(9AY)”3

(10)

The fluctuating term, f; is to be obtained by solving
equation (7) for a specified fluctuating velocity gradi-
ent, 5. If a progressive harmonic disturbance in the
flow field is considered, its time and space variations
are specified by

_ 2n
AV,

§= §e—i(2n/l)(x— Val) — S:eiwr e—ia)x/Vw ;o

an

where § is the (real) disturbance amplitude of fre-
quency , progressing downstream at a velocity V.
For §/S « 1 the linearized form of equations (7) may
be considered, in which the solution for f takes the
form

f=fixy) e = fx,y)e oM e (12)

Note that f is generally a complex number. Sub-
stituting equations (11) and (12) into equations (7)
the following non-dimensional equation for f'= fS/§
is obtained :

oF 8f

X~ ay?

1 *f
—W[ﬁ‘ WZUZfJ

iWll-UY]f+Y

- l—z_YzaY_YaX 13)
with
f=f§/§, W= w*L+2/3; w* =%N1/3;
u* (L3
v =7<7\7> : (14

Again, for sufficiently large N¥>L* %3 the fourth term
on the left-hand side of equation (13), which evolves
from retaining the diffusion in the downstream direc-
tion, may be ignored. Substituting the steady solution
for F (equation (10)) in equation (13) yields

of o

iw[l—UY]f+ Y %~y

vl owu
= 03893 Ox) 3¢ Tl tagy| @9



with
FX,0)=0;
F0,Y)=0;

0<Xx<!
FX, 00) =

It is to be noted that the case of uniform fluctuating
velocity field, whereby s # s(x), is obtained in the limit
of V, > o or U—0. In this case the formulation
reduces to that presented by Fortuna and Hanratty
[18] and Mao and Hanratty [19].

(15a)

2.1. The transfer coefficient

The measurable quantity is the instantaneous heat
or mass transfer rate averaged over the wall element.
The corresponding space average transfer coefficient

is defined by
Kl L oF
- L 0 ay

Note that K stands for either the average mass transfer
coefficient or the heat transfer coefficient divided by

¢, At steady state conditions (F= F), the cor-
responding K is obtained by substituting equations
(10) into equation (16), whereby

dx. (16)

v="0

— KL
Sh==2
o

NG
K= 0807<L> .

At unsteady conditions the instantaneous transfer
coefficient is represented as a sum of an average
(steady) and fluctuating term and is derived by sub-
stituting equations (5) and (12) into equation (16)

= 0.807L* N3,

amn

_ _ o {af

K=K+k=K+Eem”J‘ l —1(»\lwdx

L 0 ay y=0

- k+]€ei<ur (18)

where

aof § of]

2 =22 18a

=0 S 0y|-0 (182)

Equation (18) defines the (complex) transfer coeffi-
cient amplitude, k. In the limit of @ — 0, however,
a quasi-steady situation may be assumed, whereby
the relation obtained between the velocity gradient
at the wall and the average measured transfer coeffi-
cient is defined by equation (17). For the case where
the pseudosteady state assumption is valid, equation

(17) yields
Loy 0BT YR 1
3 LS $T3%

The ratio between the actual amplitude of the transfer
coefficient fluctuation (at arbitrary frequency, w) and
that obtained by assuming a pseudosteady situation
follows from equations (8), (18) and (19)

W

k= Kkiw-— (19)
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k "o o
— = 3717 e MUY dx
k, J <5£>v 0

=k(W,U) =k, +ik;,. (20)
The corresponding amplitude ratio and the phase

angle are obtained by

= k| = (B24+KkH'"?; @ =tan""(k/k). (1)

Equations (19)—(21) define the frequency domain
transfer function between a fluctuating wall shear
stress propagating downstream at a finite velocity,
and the resulting (measured) transfer coefficient. The
solution depends on the two non-dimensional par-
ameters, W and U. The first represents the fluctuation
frequency and the latter its relative propagation
velocity. The value 4~ = £ /|| represents the ampli-
tude correction that must be applied at a specified
frequency, if pseudosteady state relations, equations
(17) and (19), are used to calculate s(x, ) from the
(time varying) probe signal. The value of @ represents
the phase relation between fluctuating wall shear and
the resulting fluctuating transfer coefficient. Note that
a negative ® means that the measured coefficient lags
the shear stress variation.

The values of A(W, U) and ®(W, U) are obtained
by solving numerically equation (15) for £ and then
carrying out the integration in equation (20). Equa-
tion (15) is solved by applying the Crank~Nicholson
six-point implicit method. The tridiagonal equations
system obtained is solved by means of the standard
double sweep Thoma’s algorithm.

The numerical results are presented in Section 4.
Asymptotic analytic solutions obtained in the limit
of low and high frequencies are presented first in
Section 3.

3. ASYMPTOTIC SOLUTIONS

In the limit of low frequencies, where the quasi-
steady state assumption is valid, the instantaneous
fluctuation in the concentration (or temperature) field,
/. and that of the velocity gradient are in phase. The
differential equation for f, = flexo — 0) is obtained by
substituting F= F+/,, §=S45§ in equation (6)
((NL*? » 1is assumed). For f/F, §/§ « 1 only linear
terms are retained, whereby

of  OF)|_ &
Y[E}J”?)?} Y

fo=185s. (22)

The solution for f, may thus be derived from the
solution for F at steady state (equation (10))

OF on _1s Y@F
gg 6n055=g~3§ Y’
The corresponding fluctuation of the transfer coeffi-
cient K, is obtained by equation (19), and is also in

phase with the velocity gradient fluctuation. How-
ever, with increasing frequency, these are no longer in

A oF
=

s 23
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phase. The phase change in the low frequency region,
W « 1, may be estimated following the analysis out-
lined by Lighthill {16] and Fortuna and Hanratty [18].
Assume

F=F+iWf;, W=o*L*??

Substitution of equation (24) in equation {15) and
retaining terms of the order of W' yields

of, oM 2aF
X oy? —:UY oY’

(24)

N-Uyjfi+v= 25
An approximate solution for 7, can be obtained by
using an integral approach. Equation (25) is inte-
grated over the perpendicular direction

J‘{I—UY]dewL—j Y7 dY+1 Uj Y25F
b A
o
=%, (26)

The variation of f; in the perpendicular direction is
chosen so as to satisfy the conditions that f; and
8f;/0Y? are zero at the wall and £}, 8f,/0Y, 8*f,/6Y>
vanish as Y — o0. The following relation satisfies the
above conditions:

7= B(X)YaF

@7
Substituting equations (10), (23) and (27) into equa-
tion (26), integrating and equating terms to the equal
power of X yields
1 aF : 2/3
]= §Y’é?[l —i(B, X+ B, UX)W];

B, =055, B,=1 ©8)

The constants B, and B, have been checked against
the results obtained by numerical solution of equation
(15) in the limit of low frequencies.

The corresponding amplitude and phase correc-
tions, which are to be applied to the transfer coefficient
calculated by assuming pseudosteady state, are
derived by substituting equation (28) in equation (20)
and retaining terms linear in W. In the low frequency
limit, the equivalent of equation (20) reads

Zk: —1iW0.55+ U] 29
whereby
O = —tan™ ' {(W[0.55+ U]} =~ — 1 W[0.55+ U].
(30)

Equation (30) indicates that in the low frequency
range, and for U = 0, the instantaneous transfer
coefficient lags the fluctuating wall shear. The phase
lag increases linearly with W (either increasing fre-
quency or probe length). Slowing down a streamwise
propagating wall shear fluctuation (increasing U)
affects higher phase lag. However, with a counter-
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current propagating disturbance (U < 0), lower phase
lag is to be expected, or even a phase lead (for
U < —0.55). The amplitude ratio decreases with ¥,
and its sensitivity to frequency of oscillations increases
with U. In the limit of W « 1 the amplitude correction
factor is found to obey

2z

+[0.056+0.084 U7 +0.004 U] W,

3D

In the high frequency range, W > 1, the term Y
of1dx in equation (15) may be neglected [16]. If in
addition UY « 1 is assumed, equation (15) can be
integrated to yield

l_j
A2k

2 .
7= 3@ s o0 (—V NN -1-1Wy]

(1=3iwUx)
T O
whereby
al 2/i  (1-3iWUX) (33)
Yoo 3(9)Pr@/3) Wiy

Substituting equation (33) into equation (20) and inte-
grating yields

-~

k

+3

(Wso0,U=10)

(34)

K U
AP W

s{W—ro0 Es

where

k \/x

1
E Waotmo W3/2 j X“/?dX- (35)

The integral in equation (35) diverges, as noticed by
Ambari et af. [20]. This divergency probably evolves
from the thinning of the Stokes layer thickness, 3, =
J(@v/w), to values which are of the order of the
diffusion boundary layer thickness, d.. The Stokes
layer thickness represents the region where the mag-
nitude of the velocity oscillation changes significantly.
Consequently, the assumption of a linear variation
of velocity within the diffusion boundary layer is
restricted to finite oscillation frequency, whereby
3. « &, corresponding to W < 0.11N*?, Moreover, for
U # 0, the value of UW is to be bounded in order to
justify the neglection of the term (UW)*f'in equation
(13) (which evolves from the axial diffusion term).
Accordingly, the solution of equation (15) is to be
limited to finite oscillation frequencies, W, in the range
where the integration of equation (35) does not
diverge and (UW)/(NLT )2 « 1.

A curve fit to a power-law is performed on the
numerical calculated values of 3f/dY at the wall near
the probe leading edge (9f/8Y},., = aX™). When the
exponent n turns out to be less than — 1, the integral
in equation (20) diverges. The values obtained for the
exponent are presented in Fig. 2 as a function of
frequency. It is shown that for low U the exponent n
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Exponent of power law, -n
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|
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Nondimensional frequency, W= w*1*¥?

Fi1G. 2. Variation of the gradient at the wall near the probe
leading edge.

decreases as the frequency increases, and there exists
a critical frequency for which » indeed approaches
—1. For instance for U=0, n— —1 for W~ 30,
indicating that the analysis cannot be carried out
beyond this frequency. For U # 0, though higher
frequencies still yield convergence, the neglection of
the axial diffusion must be justified (see equation (13)).
Hence

V

W « (NL+2)”3/|U| = % LtYV3 NY3
u

(36)

must be maintained.

4. DISCUSSION

The non-dimensional mathematical formulation
indicates that the frequency response of the
(measured) instantaneous transfer rate to a fluctuating
wall shear is determined by two parameters : the non-
dimensional fluctuation frequency W = w*L*%?
and the propagation velocity represented by U =
(w*/V,)(L*/N)"3. The frequency response is repre-
sented by the amplitude of the transfer function k/s
(normalized by its value when the frequency tends to
zero) and the corresponding phase lag. These corre-
spond to A and @ defined in equation (21).

Figure 3 presents plots of 1/4? and © as functions
of W obtained for U = 0. This case corresponds to a
fluctuating wall shear which propagates at an infinite

N
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=100 1100
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(53
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g0 10

v
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g ' A ALl A 1 3191 lll A4l I

< ) 1 10

Nondimensional frequencyW=uw*%">
Fi1G. 3. Amplitude and phase correction for U = 0.
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Phase lag, -8
[
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Nondimensional frequencyW=w*L
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FiG. 4. Amplitude and phase corrections for U = 0.2.

velocity, as in the pulsating pipe flow of an incom-
pressible fluid, whereby a uniform (in space) fluc-
tuating wall shear is induced. As noted earlier, with
U = 0 the formulation reduces to that presented by
Fortuna and Hanratty [18] and Mao and Hanratty
[19]. Indeed, the resuits presented in Fig. 3 are ident-
ical to those obtained by Mao and Hanratty. The
value of 1/4? stands for the correction factor to be
applied to the power spectrum density of the wall
shear obtained via pseudosteady state model cal-
culations. For U = 0 the amplitude correction factor
and the corresponding phase lag are found to increase
monotonously with the non-dimensional frequency
parameter, W.

Plots of the amplitude correction factor and phase
lag obtained for U > 0 are presented in Figs. 4-6.
Higher values of U correspond to slower propagating
wall shear fluctuation, the velocity being scaled with
reference to the shear velocity of the average flow
field, «*. Comparison of Figs. 3-6 reveals that, gen-
erally, the amplitude correction factor and the phase
lag increase when the fluctuating wall shear is slowed
down (increasing U). For sufficiently low frequencies,
the calculated phase lag follows the analytic asymp-
totic solution given in equation (30). For higher fre-
quencies, quite different trends of the amplitude ratio
and phase lag are noticed for U=0 and U # 0.
Recalling that whenever the probe length, L, equals
the wavelength A = 2nV, /o (or integer multiples of
the wavelength, L = mA) the wall shear fluctuation is
averaged-out over the probe surface, an oscillatory
behaviour is to be expected in the frequency response.
In terms of the non-dimensional parameters W, U the
wavelength equals the probe length when WU = 2n.
Inspection of Figs. 4-6 reveals that, indeed, the ampli-



On the frequency response of wall transfer probes

T T lll)lll' L

{a) u=05 7

g

T T

100 -

Amplitude correction factor ,1/A%
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FiG. 5. Amplitude and phase corrections for U = 0.5.

tude correction factor increases dramatically when-
ever W = 27/U is approached. Thereafter (for higher
W) an oscillatory variation with W is established. The
corresponding phase lag, ®, may exceed 27, whereby
the phase information between the wall shear fluc-
tuation and measured fluctuating transfer rate is prac-
tically lost. Therefore, the frequency range where
meaningful information on the wall shear fluctuation
may be deduced from the transfer rate measurements
is practically limited to W < 2n/U. The plots of 1/42
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FiG. 6. Amplitude and phase corrections for U = 1.

and © obtained in this range are summarized in Fig.
7 forawide range of U (0 < U K 10).

It is of interest at this point to refer to the practical
range of the parameter U. Recently, wall transfer
probes have been applied in experimental systems of
falling films, as well as in a variety of two-phase
sheared film flows [8-15], in an attempt to find the
phase and magnitude relations between the instan-
taneous wall shear fluctuations and the corresponding
passing-by interfacial wave. Clearly, these can be
deduced provided the probe frequency response as a
function of U and W is known and properly accounted
for. The expected range of the parameter U in wavy
film flow has been evaluated in ref. [23] and the results
are summarized in Table 1.

2

<3
<

Amplitude correction factor, I/A
[+

T T T T

F (b U0 5 2 3]

100

AN

Phase lag, -8

il

1 I 10

. r2r3
Nondimensional frequency , W=w*L

' 1 1 1. 1.1 III 1
) I o
Nondimensional frequency , Wew*t**"®

FiG. 7. Effect of fluctuation velocity on the probe frequency response.
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Table [. Evaluation of U in wavy film flow

Laminar Nusselt’s film

Turbulent falling film [21]

Sheared laminar film [22]

3 vIRe\"? PEACE

h= - . Re=4Iju 0.135{ —) Re’'?
4 g g

u* = 82 = (gh)"? 0.367(vg)""® Re™?*
3.42 1.335

Wite= o Cre CRe'™

L*u L L
LY =""=  0.95Re"®—5—— 37ReTM =
v NTEPLE 037Re gy

3v2Re|"? 3.
[Z‘ gd& <1+51‘>

D= 1+ (—dpyex)pg

T
pdgh,

lgph(l+ )]

3.2 | 4 |2 [ 1+t

CRe™[1+15% "B\ 14157
1/6 (l+f‘)]’2 1/3

0.95Re ®

@) (1+1.58)"

%, > 0, cocurrent downflow; —% < £, < 0, countercurrent downflow ;

According to Table 1 the value of U for a free falling
film can be estimated by

(34 L ) L,
<lemgrmn]

U—ﬂ LT\ laminar film
T V.AN =9 1 L 1/3 ,
clema] e

turbulent film

(37

where Re is the film Reynolds number, Re = 4I'/u,
and C the dimensionless wave celerity scaled with
reference to the average film velocity. (For a laminar
film and Re ~ 100, C ~ 3 and it decreases with Re.
For Re > 10% and a turbulent film C ~ 1 [22].)

Equation (37) indicates that for a laminar free fall-
ing film the value of U decreases with increasing the
film Reynolds number. For sufficiently small probes
(L ~ 1 mm)and Re > 100, Uis not expected to exceed
the value of 0.25 even with thermal probes (N = 5).
For mass transfer probes with ¥ =~ 10°, smaller values
for U are predicted (U < 0.05), in which case the probe
frequency response for U # 0 is expected to approxi-
mately follow that obtained for U = 0. For turbulent
falling films, however, the value of U is predicted to
increase with the film Reynolds number. For instance,
with L =1 mm, Re=10% C=1 and water film
(v = 0.01 em?s™"), U = 2.7 is obtained for a thermal
probe (N =5) and U = 0.5 for an electrochemical
probe (N =~ 10%). Accordingly, the probe frequency
response demonstrated in Figs. 5 and 6 may be rel-
evant in these cases.

For sheared film flow, the value of U depends also
on the interfacial shear magnitude and direction (see
Table 1). For film downflow, applying a cocurrent
interfacial shear, 7, > 0, affects lower values of u*/V,,
compared to those obtained for a free falling film at

f, < —32, cocurrent upflow (g < 0).

the same Reynolds number. However, with a coun-
tercurrent interfacial shear, 7, < 0, u*/V,, (and U) may
increase dramatically, mainly due to the decrease of
the wave celerity. Indeed, stability analysis of sheared
film flow [22] indicates that for ¥, < —0.5 the most
amplified waves are standing waves, whereby C = 0,
and thus u*/V, may attain very high values. For
higher countercurrent interfacial shear (7} < —0.5)
the most amplified waves correspond to upward trav-
elling waves (C < 0), for which «*/V, (and U) attains
high negative values. Increasing the counter shear
beyond = —2/3 results in upward film flow,
whereby both the film flow and the interfacial waves
travel upward and thus C > 0 again. However, for
—2/3< %< —1, u* <0, and therefore negative
values of u*/V, are predicted. With 7; < —1, u*/V,,
again attains positive values corresponding to co-
current upward film flow.

Figure 7 shows the amplitude correction factor and
the corresponding phase lag obtained for a wide range
of U. For each value of U the relevant frequency range
W is restricted to that beyond which either the phase
information is lost (® exceeds 27) or the amplitude
correction factor starts oscillating. Evidently, with
increasing U the probe frequency response sig-
nificantly deteriorates, and the frequency range where
a meaningful interpretation of measurements is
feasible diminishes.

The effect of U < 0 on the probe frequency response
for a wide range of W is demonstrated in Figs. 8-10.
It is shown that except for very low negative U, the
amplitude correction factor increases with increasing
|U| over the entire frequency range. Again, beyond
W ~ 2n/| U} both the amplitude correction and the
phase start oscillating. For sufficiently low frequencies
the numerical results obtained 1/42 and ® follows the
analytic asymptotic expressions derived for W -0
(equations (30) and (31)). Indeed, the phase lag is
found to decrease when compared to that predicted
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for U = 0 and for U < —0.55 a phase lead is obtained
in the low frequency range. Note that for U= —0.5
(Fig. 9(b)), although the low frequency range still
yields a phase lag, a phase lead is predicted for higher
frequencies (3 < W < 10).

The numerical results for the amplitude correction
factor and the phase (lead) obtained for a wide range
of negative U are shown in Fig. 11. As with positive
U, the range of frequencies for which the pseudo-
steady assumption may be expected to be valid is
shown to be significantly restricted with increasing
Ul
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5. CONCLUDING REMARKS

Wall transfer probes may be used for measuring
wall shear fluctuations provided that their time
response is known. The probe frequency response is
shown here to depend on the two non-dimensional
parameters, W = @*L***and U = (u*/V )(L*/N)'>.
For spacial uniform wall shear fluctuation, ¥, —
o and U =0, the frequency response previously
predicted by Fortuna and Hanratty [18] and Mao
and Hanratty [19] is recovered. In this case the probe
cut-off frequency is found to decrease with increas-
ing N (Prandtl or Schmidt numbers), apparently indi-
cating an advantage of thermal probes over electro-
chemical probes. However, as has been already dis-
cussed by Mao and Hanratty [19], when the restriction
which evolves from the neglection of the diffusion
in the axial direction is accounted for (L* » N~ %),
larger L* is required for smaller N, and consequently
mass transfer probes tend to be superior to thermal
probes.

The effect of a finite propagation velocity of the wall
shear fluctuation on the probe frequency response
is demonstrated for a wide range of U. Positive U
corresponds to a fluctuation which propagates in the
main flow direction, while / < 0 stands for situations
where the wall shear fluctuation propagates counter-
currently to the main flow. It is shown that with
increasing |U| the probe frequency response sig-
nificantly deteriorates. Moreover, the possibility of
extracting meaningful information of the wall shear
fluctuation (while accounting for the probe time
response) is restricted to W < 2a/U. Since U oc N'*
it is advantageous to employ experimental setting of
larger N, reinforcing the superiority of mass transfer
probes over thermal probes.

This is further elucidated with reference to Fig. 12.
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If we consider, for example, an electrochemical probe
with N = 10°, the minimum probe length for which
the neglection of axial diffusion may be justified is
LY, =14N"Y2=0.44 [2]. The corresponding mini-
mum thermal probe length (N =35) is L}, = 6.26.
Since N'Y3L**3 is identical for the two probes
(N'PL*?3 = 14%%) the cut-off frequency w* for a
specified U = (u*/V,)(L*/N)"*is the same. However,
as (L*/N)'? is significantly larger for the thermal
probe the cut-off frequency at a specified u*/V, is
expected to be larger for the electrochemical probe.
Figure 12 compares the maximum frequency allowed
with these two probes if corrections greater than 5%
on the amplitude are to be avoided (1/4% < 1.05) as
a function of w*/V,. It is shown that while for
u*/V, = 0 the restriction on w* is the same for the
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Fi1G. 12. Cut-off frequency—comparison between thermal
and electrochemical probes.

two probes, for u*/V,, # 0 the cut-off frequency of the
electrochemical probe is larger, indicating a superi-
ority of the mass transfer probe over the thermal
probe when larger |u*/V,| are expected. The cut-off
frequency corresponding to a phase error less than 5°
is also indicated on Fig. 12. This criterion is generally
found to be more restrictive than the above amplitude
criterion, except in the vicinity of negative u*/V,, cor-
responding to U ~ —0.5, where relatively large fre-
quencies may be dictated with minor phase shifts (see
also Fig. 9 and equation (30)). The electrochemical
probe is shown to be superior to the thermal
probe also from the viewpoint of phase correction
restrictions.

It is further to be noted that w™ > 0.2 is to be
avoided with the thermal probe if the Stokes layer
restriction (W < 0.11N¥?) is considered, while for the
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Fi1G. 13. Cut-off frequency for thermal and electrochemical
probes of equal size.
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electrochemical probe this restriction does not impose
any practical limitation (w* <600 for N = 10°
LY =0.44).

Complementary to Fig. 12, Fig. 13 compares the
above cut-off frequencies (for 1/4*<1.05 or
@] < 5°) when the electrochemical probe length is
increased to L™ = 6.26. Itis concluded that the advan-
tage of the thermal probe over an equal size electro-
chemical probe is limited to low u*/V,, and diminishes
as u*/V,, increases. For u*/V,, < —2 the phase cor-
rection cut-off frequency is shown to be larger for the
electrochemical probe.

Finally, it is to be noted that in practical situations
non-tinear effects may be of importance and therefore
in utilizing the above (linear) results, nonlinearities
ought to be considered.
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REPONSE EN FREQUENCES DES SONDES DE TRANSFERT A LA PAROI

Résumé—La réponse temporelle des sondes de transfert en paroi peut affecter de fagon sensible I'in-
terprétation des phénoménes physiques. La fonction de transfert entre le flux de chaleur ou de masse 4 la
surface et le gradient de vitesse a la paroi est analysée dans le domaine de fréquence. Une variation spatiale
induite par la vitesse finie de propagation d'une tension de cisaillement pariétale est considérée, comme
cela peut étre rencontré fréquemment dans des systémes d’écoulement diphasiques. L’analyse indique que
la réponse est déterminée par deux paramétres, la fréquence adimensionnelle et la vitesse adimensionnelle
de fluctuation. Les corrections d’amplitude et de phase qui doivent étre appliquées a des caiculs de modéle
pseudostatique sont calculées. On trouve que la réponse en fréquence se détériore significativement lorsque
la fluctuation en paroi diminue. La sensibilité de la réponse 4 la fluctuation de vitesse diminue quand le
nombre de Prandtl ou de Schmidt augmente, ce qui indique une supériorité des sondes électrochimiques
sur les sondes thermiques.
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UBER DEN FREQUENZGANG VON SENSOREN FUR DEN WARME- UND
STOFFTRANSPORT AN DER WAND

Zusammenfassung—Das Zeitverhalten von Sensoren fiir den Wirme- oder Stofftransport an der Wand
kann die Interpretation der beteiligten physikalischen Phinomene wesentlich beeinflussen. Die Uber-
tragungsfunktion zwischen der Wirmestrom- oder Massenstromdichte an der Oberfliche des Sensors
und der Schubspannung an der Wand wird im Frequenzbereich analysiert. Rdumliche Verinderungen
werden beriicksichtigt, die durch die endliche Ausbreitungsgeschwindigkeit einer fluktuierenden Wandschub-
spannung hervorgerufen und hiufig in verschiedenen Zweiphasenstrémungs-Systemen angetroffen werden.
Die Untersuchung zeigt, daB die Antwort durch zwei Parameter bestimmt wird—die dimensionslose
Frequenz und die dimensionslose Ausbreitungsgeschwindigkeit. Die Amplituden- und Phasenkorrekturen,
die bei pseudostationdren Modellrechnungen angewandt werden miissen, werden numerisch berechnet. Es
zeigt sich, daB der Frequenzgang des Sensors bei einem Abnehmen der Fluktuation der Wandschub-
spannung wesentlich schlechter wird. Die Empfindlichkeit der Antwort gegeniiber der Fluktuations-
geschwindigkeit wird geringer, wenn die Prandtl- oder die Schmidt-Zahl steigt. Dies zeigt eine Uber-
legenheit elektro-chemischer Sensoren gegeniiber thermischen.

YACTOTHAA XAPAKTEPUCTUKA 30HOO0B J1J1s1 USMEPEHUS TTEPEHOCA HA
CTEHKE

AnBOTAIHS —BpeMeHHAs XapaKTEPHCTHKA 30HIOB [JIS H3MEPECHHS NEPEHOCA HA CTEHKE MOXET CYLLIECT-
BCHHO BJIMATH HA HHTEPIPETAUMIO PACCMATPHBAaeMbIX (H3HYECKHX ABJICHHA. B wacroTHoilt obnacTh aHa-
JM3MPYETCS CBA3b MEXIY IUIOTHOCTHIO TEIIOBOTO HJIM MacCOBOTO MOTOKA HAa IOBEPXHOCTH 30HMA H
CABMTOM Ha cTeHKe, Mccrnemyercss MPOCTPaHCTBEHHOE H3MEHCHHE, BBI3BAHHOC KOHEYHOH CKOPOCTBIO
pacnipocTpanenns QUIYKTYMPYIOUIEro CIABHIa Ha CTEHKE, YTO YaCTO HMEET MECTO B Pa3JIMYHBIX CHCTEMAX
nByXx(asHBIX TeYeHHH, AHAJIN3 TOKA3BIBAET, YTO YaCTOTHAA XaPAKTEPHCTHKA ONPEACHACTCA ABYMS Napa-
MeTpaMH: Ge3pa3MepHORl uacToToil H Ge3pasMepHOl CKOPOCTBIO (yKTyalHu. YHCIEHHO pacCYMThI-
BAIOTCA TNONPABKH HAa AMIWINTYAHbIC H (a3oOBbie HCKAXCHHSA, KOTODHIE CAedyeT MNPHMEHATH MpH
4HC/IEHHBIX pacyeTax Ha OCHOBC KBa3HCTAUMOHApHbIX Moxenci. Halimeno, 4To co CHHXEHHEM CKOPOCTH
¢IIyKTyalnil CABHTA HA CTEHKE YACTOTHAA XapaKTEPHCTHKA 30HJA 3HAYMTEILHO yXyamaetcs. UyscTeu-
TENBHOCTh YAaCTOTHOH XAapaKTEPHCTHKM K CKOPOCTH (IyKTyammil yMEHBIIAETCH C POCTOM YHCEJ
Mpanarna win MIMuara, 9TO CBMAETENLCTBYET O MPEHMYINECTBE NEKTPOXHMHYECKOTO 30HAWPOBAHHS
NEPER TEIUIOBBIM.



