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Abstract-The time response of wall transfer probes may significantly affect the interpretation of the 
physical phenomena involved. The transfer function between the heat or mass flux at the probe surface 
and the wall shear is analysed in the frequency domain. Space variation induced by the finite propagation 
velocity of a fluctuating wall shear is considered, as frequently encountered in various two-phase flow 
systems. The analysis indicates that the response is determined by two parameters-the non-dimensional 
frequency and the non-dimensional fluctuation velocity. The amplitude and phase corrections, which are 
to be applied to pseudosteady model calculations are numerically calculated. It is found that as the wall 
shear fluctuation is slowed down the probe frequency response significantly deteriorates. The sensitivity of 
the response to the fluctuation velocity reduces as the Prandtl or Schmidt numbers increase, indicating a 

superiority of electrochemical probes over themal probes. 

1. INTRODUCTION 

THE INFORMATION about the variation of the local and 
instantaneous wall shear stress is often found to be 
useful in analysing various single and two-phase flows. 
The development of small, flush mounted wall trans- 
fer probes, capable of measuring the instantaneous 
heat or mass transfer rates, offers the opportunity of 
obtaining insight on the flow characteristics in the 
near wall region. However, meaningful and successful 
interpretation of experimental data depends, in a very 
critical manner, on the knowledge of the dynamic 
behaviour or transfer function of the measuring device 
used. 

The mass transfer probe is based upon the diffusion 
controlled electrolysis technique, developed by Reiss 
and Hanratty [I]. The surface of the probe forms an 
electrode which is maintained at a constant (zero) 
concentration and the mass transfer rate is determined 
by measuring the current in the electrolysis cell. With 
heat transfer probes, the instantaneous transfer rates 
at the wall are obtained by measuring the heating 
power required for maintaining a constant probe 
temperature. 

Various experimental and theoretical aspects con- 
cerning the application of wall transfer probes have 
been reviewed by Hanratty and Campbell [2]. These 
probes have been used extensively in experimental 
studies of single phase flows, for example, the studies 
of turbulent wall shear fluctuation in steady and pul- 
sating pipe flows [3-71. In studies of two-phase flows 
these probes have been used to measure the average 
wall shear, as well as the magnitude and direction 
of the fluctuation induced by the wavy gas-liquid 
interface [8-151. 

It is by now well established that a significant error 

can arise in interpreting data concerning a fluctuating 
wall shear due to the capacitance effect of the con- 
centration or thermal boundary layers. Only for a 
slowly varying velocity field, can a pseudosteady state 
assumption be made, whereby the instantaneous mass 
transfer coefficient and the instantaneous velocity 
gradient are related by steady flow model equations. 
Asymptotic solution for the frequency response of 
the transfer rates at the wall to a uniform (in space) 
fluctuating wall shear, in the limits of high and low 
frequencies, have been presented by Lighthill [ 161 and 
Bellhouse and Schultz [ 171. Fortuna and Hanratty [ 181 
and later, Mao and Hanratty [19] obtained numerical 
results for the corrections which are to be applied to 
the pseudosteady state solution when a wall shear 
fluctuation of an arbitrary frequency is concerned. 
The effect of accounting for the diffusion in the axial 
direction on the probe frequency response was 
recently studied by Ambari et al. [20]. These studies 
show that the use of the pseudosteady state assump- 
tion always introduces an error in the determination 
of the instantaneous wall shear stress. Moreover, the 
larger the Schmidt or Prandtl numbers the lower the 
probe cut-off frequency. Hence, a detailed knowledge 
of the probe frequency response is essential for its 
meaningful application. 

The above-mentioned frequency response studies 
[16-201 are based on the assumption of a uniform flow 
field, whereby no space variation in the average wall 
shear or in its fluctuation are allowable. Indeed, the 
assumption of uniform fluctuation in space does not 
introduce any limitation for the applicability of the 
analysis to pipe flow oscillations induced by pressure 
waves. In studies of two-phase flows, however, the 
wall shear oscillations are strongly related to the 
mobile interfacial waves. Here, space variation of the 
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NOMENCLATURE 

A amplitude ratio, equation (21) L: perpendicular velocity component [m s ‘1 
C non-dimensional wave celerity W non-dimensionless frequency, w*L” ‘I’ 
F non-dimensional temperature or x dimensionless downstream distance, 

concentration equation (8) 

< 
fluctuating component of F x downstream distance [m] 

; fluctuation amplitude Y non-dimensional distance perpendicular to 
relative fluctuation,f$/.? the wall 

9 gravitational acceleration [m s- ‘1 Y distance perpendicular to the wall [ml. 
h film thickness [m] 
K transfer coefficient [m s- ‘1 Greek symbols 
R steady state transfer coefficient [m s- ‘1 
k fluctuating component of transfer “r 

diffusivity of mass or heat [m’ s- ‘3 
film flow rate [kg mm ’ se ‘1 

coefficient [m s- ‘1 s boundary layer thickness [m] 
F amplitude of k [m s- ‘1 rl similarity variable defined in equation (10) 

I;, amplitude of k for pseudosteady solution 0 phase (lag or lead) of L relative to s^ 
[m s- ‘1 3. wavelength [m] 

L length of transfer element [m] p viscosity [kg m- ’ se ‘1 
L+ non-dimensional length of transfer V kinematic viscosity [m’ s- ‘1 

element, Lu*/v 2, film interfacial shear [N m-‘1 
N Schmidt number or Prandtl number, v/cc $J pressure drop factor, Table 1 

P pressure [N mm ‘1 0 angular velocity [rad s-‘ ‘1 
Re film Reynolds number, 4r/p w* dimensionless angular velocity, 
S velocity gradient at the wall [s- ‘] equation (14) 
S time average of S [s- ‘1 o+ dimensionless angular velocity, WV/U*~. 
s fluctuating component of S [s- ‘1 
s^ amplitude of s [s- ‘1 Subscripts 
T temperature [“Cl b bulk 
t time S pseudosteady model, or sheared interface 
U non-dimensional disturbance propagation w wall. 

velocity, equation (14) 
u average film velocity [m s _ ‘1 Superscripts 
U axial velocity [m s- ‘1 - time average 
U* friction velocity, (16)“~ [m s- ‘1 ^ fluctuation amplitude 

VW perturbation propagation velocity [m s- ‘1 + non-dimensionalized by u* and v. 

fluctuating wall shear may be of importance in eval- unsteady two-dimensional conservation equations 
uating the probe frequency response, and therefore, ^ ^ 
may affect the interpretation concerning the ampli- 
tude and phase relations between the wall shear and 
the passing-by interfacial wave. 

It is therefore the purpose of the present study to 
extend the frequency response analysis of wall transfer 
probes to a propagating wall shear fluctuation. 

2. THE GOVERNING EQUATIONS 

The problem of interest is the unsteady heat or 
mass transfer to a two-dimensional small wall element 
(probe) aligned with its long side, w, perpendicular to 
the direction of the mean flow. The conditions at the 
probe surface are controlled so that it is maintained 
at a constant temperature, T, (or constant con- 
centration, C,), which differs from that in the bulk 
oncoming fluid ( Tb or C,). For sufficiently wide probes 
(W >> L), the temperature or concentration in the 
developing boundary layer is governed by the 

““+d”._o 
ax ay 

where F stands for either the non-dimensional tem- 
perature (= (T- Tw)/( Tb - Tw)) or concentration 
(= (C-CW)/(C,-C,)), E is the fluid (thermal or 
mass) diffusivity, y the distance from the wall and x the 
distance in the mean flow direction, as schematically 
described in Fig. 1. The relevant boundary conditions 
are 

F(+cqy,t)=F(x,co,t)=l 

F(x,O,t)=O; O<x<L 

E(x, 0, t) = 0; x<o; x> L. (3) 



On the frequency response of wall transfer probes 2643 

FIG. 1. Schematic description of a wall transfer probe. 

If the probe length is small enough, the concentration 
or thermal boundary layer which develops over it will 
be so thin, that the velocity field is well described by 

1 as 
u=S(x,t)y; v= yyyz (4) 

where S is the velocity gradient at the wall. The vel- 
ocity gradient at the wall and the resulting tem- 
perature (or concentration) are expressed as a sum of 
steady and fluctuating terms 

S(X, t) = S(x) +s(x, t) ; F(x, t) = F(x) +f(x, t). 
(5) 

Note that the perpendicular velocity v, which has been 
ignored in previous studies [l&19], is retained here, 
since spatial variation of the wall shear is to be con- 
sidered, s = X(X, t). For a steady uniform flow field 
9 = const., and the substitution of equation (5) into 
equations (2)-(4) yields for the steady field, E 

sy!&(!$+!$) (6) 

F(x, co) = F(;(+ a3,y) = 1 (6a) 

F(x,O)=O; O,<x<L (6b) 

$(x, 0) = 0; x<o; x>L (6~) 

and for the fluctuation term, f 

i 2 as aE aP 
=rjy ~ay-sY~ 

.I-(& a, y, 0 =f(x, co, 0 = 0 

f(x,O,t)=O; O,<x<L 

~(x,O,r)=O; x<o; x > 1. 

In terms of the non-dimensional variables 

x = x/L = x+/L+ ; L+ = y; u* = @$)‘12 

N = v/u (8) 

(7) 

(7a) 

(7b) 

(7c) 

equation (6) reads 

aF a2P 1 a=P 
'ax= @ + ~2/3~+4/3 3x2 ’ (9) 

Note that N is either the Schmidt number or the 
Prandtl number. For N213L+4/3 >> 1 the diffusion in 
the main flow direction may be neglected, and the 
(steady state) solution of equation (9) reads [l] 

-Z’dz, r~ = Y/(9X)“‘. (10) 

The fluctuating term, J is to be obtained by solving 
equation (7) for a specified fluctuating velocity gradi- 
ent, s. If a progressive harmonic disturbance in the 
flow field is considered, its time and space variations 
are specified by 

s = ~e-i(27c/l)(x-Vwf) = ~eiote-ifax/Vw; 
u=g (11) 

w 

where s^ is the (real) disturbance amplitude of fre- 
quency w, progressing downstream at a velocity I’,,,. 
For 2/s << 1 the linearized form of equations (7) may 
be considered, in which the solution for f takes the 
form 

f = 3, (x, y) eiw’ = 3(x, y) e-iox’“w eiw’. (12) 

Note that 3 is generally a complex number. Sub- 
stituting equations (11) and (12) into equations (7) 
the following non-dimensional equation for T= j’sij 
is obtained : 

aP a=? 
i WI1 - Vu]?+ YaX - ayi 

- N','Zt'3 [g - w2u2?] 

.wu ,aP aF 

= -12 Y au- Yax (13) 

with 

7=33/i; w= w*L+=13; We = $N’/3; 

u* L+ l/3 

U=v,N . ( > (14) 

Again, for sufficiently large N2/3L+413 the fourth term 
on the left-hand side of equation (13), which evolves 
from retaining the diffusion in the downstream direc- 
tion, may be ignored. Substituting the steady solution 
for E (equation (10)) in equation (13) yields 

1 
= ~ &eey3,gx[ -iy + A] 

0.893 (9x) 
(15) 
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with 

.f-(X,0)=0; o<x< 1 

.T(O, Y) = 0 ; .7(X, cc) = 0. (154 =L(W,U)=k;+ik;. (20) 

It is to be noted that the case of uniform fluctuating The corresponding amplitude ratio and the phase 

velocity field, whereby s # s(x), is obtained in the limit angle are obtained by 

of VW + co or U + 0. In this case the formulation 
reduces to that presented by Fortuna and Hanratty 

A = jE[ = (I$,!++~)“~; 0 = tan ’ (Qk”,). (21) 

[18] and Mao and Hanratty [19]. Equations (19)-(21) define the frequency domain 
transfer function between a fluctuating wall shear 

2.1. The transfer coeficient stress propagating downstream at a finite velocity, 

The measurable quantity is the instantaneous heat and the resulting (measured) transfer coefficient. The 

or mass transfer rate averaged over the wall element. solution depends on the two non-dimensional par- 

The corresponding space average transfer coefficient ameters, Wand U. The first represents the fluctuation 

is defined by frequency and the latter its relative propagation 
velocity. The value A- ’ = &,ilk^l represents the ampli- 

dx. (16) 
tude correction that must be applied at a specified 
frequency, if pseudosteady state relations, equations 

Note that K stands for either the average mass transfer 
(17) and (19) are used to calculate s(x, t) from the 

coefficient or the heat transfer coefficient divided by 
(time varying) probe signal. The value of 0 represents 

pcP. At steady state conditions (F= 0, the cor- 
the phase relation between fluctuating wall shear and 

responding I? is obtained by substituting equations 
the resulting fluctuating transfer coefficient. Note that 

(10) into equation (16), whereby 
a negative 0 means that the measured coefficient lags 
the shear stress variation. 

s = p’ = 0,807L+2/“N’/3 ; 
The values of A( W, U) and O( W, U) are obtained 

by solving numerically equation (15) for f and then 
carrying out the integration in equation (20). Equa- 

(17) 
tion (15) is solved by applying the Crank-Nicholson 
six-point implicit method. The tridiagonal equations 
system obtained is solved by means of the standard 

At unsteady conditions the instantaneous transfer double sweep Thoma’s algorithm. 
coefficient is represented as a sum of an average The numerical results are presented in Section 4. 
(steady) and fluctuating term and is derived by sub- Asymptotic analytic solutions obtained in the limit 
stituting equations (5) and (12) into equation (16) of low and high frequencies are presented first in 

Section 3. 

where 

= R+Le”“’ (18) 
3. ASYMPTOTIC SOLUTIONS 

In the limit of low frequencies, where the quasi- 
steady state assumption is valid, the instantaneous 
fluctuation in the concentration (or temperature) field, 

(184 f, and that of the velocity gradient are in phase. The 
differential equation for j: = &(w -+ 0) is obtained by 

Equation (18) defines the (complex) transfer coeffi- 
substituting F = F+fs, S = $+j: in equation (6) 

cient amplitude, h!. In the limit of w -+ 0, however, 
((NL+ *) >> 1 is assumed). Forj;/p, S/s << 1 only linear 

a quasi-steady situation may be assumed, whereby 
terms are retained, whereby 

the relation obtained between the velocity gradient 
at the wall and the average measured transfer coeffi- 
cient is defined by equation (17). For the case where 
the pseudosteady state assumption is valid, equation The solution for A may thus be derived from the 
( 17) yields solution for Fat steady state (equation (10)) 

L5 = &lo + 0) = 

The ratio between the actual amplitude of the transfer The corresponding fluctuation of the transfer coeffi- 
coefficient fluctuation (at arbitrary frequency, o) and cient & is obtained by equation (19), and is also in 
that obtained by assuming a pseudosteady situation phase with the velocity gradient fluctuation. How- 
follows from equations (8), (18) and (19) ever, with increasing frequency, these are no longer in 
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phase. The phase change in the low frequency region, 
W cc 1, may be estimated following the analysis out- 
lined by Lighthill [ 163 and Fortuna and Hanratty [ 181. 
Assume 

f=xtiWy,; W= o*L+~~‘. (24) 

Substitution of equation (24) in equation (15) and 
retaining terms of the order of W’ yields 

8.K a% - 
[l-UY]j:+Y~=yl-~UY’~. (25) 

An approximate solution for .T, can be obtained by 
using an integral approach. Equation (25) is inte- 
grated over the perpendicular direction 

s 
m Yy,dY+:U 
0 

ail = --. 
aY y=o’ (26) 

The variation off, in the perpendicular direction is 
chosen so as to satisfy the conditions that 7, and 
a2~i/a Y* are zero at the wall and _?,, af,/a Y, a’f,/a Y2 
vanish as Y + co. The following relation satisfies the 
above conditions : 

(27) 

Substituting equations (lo), (23) and (27) into equa- 
tion (26), integrating and equating terms to the equal 
power of X yields 

B, =0.55; B,=& (28) 

The constants B, and B2 have been checked against 
the results obtained by numerical solution of equation 
(15) in the limit of low frequencies. 

The corresponding amplitude and phase correc- 
tions, which are to be applied to the transfer coefficient 
calculated by assuming pseudosteady state, are 
derived by substituting equation (28) in equation (20) 
and retaining terms linear in W. In the low frequency 
limit, the equivalent of equation (20) reads 

L 
ic, = 1 - ii WIO.55 + U] (29) 

whereby 

O= -tan-‘{~W[0..55+U]} z -$W[OS5+U]. 

(30) 

The integral in equation (35) diverges, as noticed by 
Ambari et al. [20]. This divergency probably evolves 
from the thinning of the Stokes layer thickness, S, = 
J(2v/w), to values which are of the order of the 
diffusion boundary layer thickness, S,, The Stokes 
layer thickness represents the region where the mag- 
nitude of the velocity oscillation changes significantly. 
Consequently, the assumption of a linear variation 
of velocity within the diffusion boundary layer is 
restricted to finite oscillation frequency, whereby 
6, << 6, corresponding to W c 0.11 N”‘. Moreover, for 
U f 0, the value of UW is to be bounded in order to 
justify the neglection of the term ( UW)2_?in equation 
(13) (which evolves from the axial diffusion term). 
AccordingIy, the solution of equation (15) is to be 
limited to finite oscillation frequencies, W, in the range 
where the integration of equation (35) does not 
diverge and (U~2/(~L+2)2’3 cc 1. 

Equation (30) indicates that in the low frequency A curve tit to a power-law is performed on the 
range, and for U > 0, the instantaneous transfer numerical calculated values of rZ??/aY at the wall near 
coefficient lags the fluctuating wall shear. The phase the probe leading edge ($/a Y 1 r= o = ax”). When the 
lag increases linearly with W (either increasing fre- exponent n turns out to be less than - 1, the integral 
quency or probe length). Slowing down a streamwise in equation (20) diverges. The values obtained for the 
propagating wall shear fluctuation (increasing U) exponent are presented in Fig. 2 as a function of 
affects higher phase lag. However, with a counter- frequency. It is shown that for low U the exponent n 

current propagating disturbance (U < 0), lower phase 
lag is to be expected, or even a phase lead (for 
U < -0.55). The amplitude ratio decreases with W, 
and its sensitivity to frequency of oscillations increases 
with U. In the limit of W << 1 the amplitude correction 
factor is found to obey 

1 is” 
zT=’ I I k 

= 1-t [0.056+0.084U2 +O.O04U] W2. 

(31) 

In the high frequency range, W >> 1, the term Y 
&G.x in equation (15) may be neglected [16]. If in 
addition UY cc 1 is assumed, equation (15) can be 
integrated to yield 

3= 3(9),,~~(4,3)[exp(-J(iW)Y)-l-!WY21 

X t14iWUX) (32f 

wzx413 

whereby 

a3 
ar,=,= - 

2Ji (1-tiWUX), (33) 
3(9)‘!“I-(413) W3’2X4’3 

Substituting equation (33) into equation (20) and inte- 
grating yields ^ 

-1 I u 
g w_a =; tw_m.u=o)+3v-i3~2 (34) 

where 

Ii 
f 
k, w-.o.u=o 

= -&.!_ ’ IdX. 
s 

w3/2 o x413 
(35) 
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Nondimensional frequency,W=w*l? 

FIG. 2. Variation of the gradient at the wall near the probe 
leading edge. 

decreases as the frequency increases, and there exists 
a critical frequency for which n indeed approaches 
-1. For instance for U=O, n-+ -1 for W1:30, 
indicating that the analysis cannot be carried out 
beyond this frequency. For U # 0, though higher 
frequencies still yield convergence, the neglection of 
the axial diffusion must be justified (see equation (13)). 
Hence 

I$‘<< (NL+2)‘~3/IUI = (36) 

must be maintained. 

4. DISCUSSION 

The non-dimensional mathematical formulation 
indicates that the frequency response of the 
(measured) instantaneous transfer rate to a fluctuating 
wall shear is determined by two parameters : the non- 
dimensional fluctuation frequency W = co*Lt2i3 
and the propagation velocity represented by Ii = 
(u*/V,J(L’/N)‘~‘. The frequency response is repre- 
sented by the amplitude of the transfer function k/s 
(normalized by its value when the frequency tends to 
zero) and the corresponding phase lag. These corre- 
spond to A and 0 defined in equation (21). 

Figure 3 presents plots of l/A* and 0 as functions 
of W obtained for U = 0. This case corresponds to a 
fluctuating wall shear which propagates at an infinite 

FIG. 3. Amplitude and phase correction for U = 0. 

FIG. 

Nondimensionol frequency,W=w*l?” 

4. Amplitude and phase corrections for U = 0.2. 

velocity, as in the pulsating pipe flow of an incom- 
pressible fluid, whereby a uniform (in space) fluc- 
tuating wall shear is induced. As noted earlier, with 
U = 0 the formulation reduces to that presented by 
Fortuna and Hanratty [18] and Mao and Hanratty 
[ 191. Indeed, the results presented in Fig. 3 are ident- 
ical to those obtained by Mao and Hanratty. The 
value of l/A2 stands for the correction factor to be 
applied to the power spectrum density of the wall 
shear obtained via pseudosteady state model cal- 
culations. For U = 0 the amplitude correction factor 
and the corresponding phase lag are found to increase 
monotonously with the non-dimensional frequency 
parameter, W. 

Plots of the amplitude correction factor and phase 
lag obtained for U > 0 are presented in Figs. 4-6. 
Higher values of U correspond to slower propagating 
wall shear fluctuation, the velocity being scaled with 
reference to the shear velocity of the average flow 
field, u*. Comparison of Figs. 3-6 reveals that, gen- 
erally, the amplitude correction factor and the phase 
lag increase when the fluctuating wall shear is slowed 
down (increasing U). For sufficiently low frequencies, 
the calculated phase lag follows the analytic asymp- 
totic solution given in equation (30). For higher fre- 
quencies, quite different trends of the amplitude ratio 
and phase lag are noticed for U = 0 and U # 0. 
Recalling that whenever the probe length, L, equals 
the wavelength I = 27cV,.,/w (or integer multiples of 
the wavelength, L = rd) the wall shear fluctuation is 
averaged-out over the probe surface, an oscillatory 
behaviour is to be expected in the frequency response. 
In terms of the non-dimensional parameters W, U the 
wavelength equals the probe length when WU = 297. 
Inspection of Figs. 4-6 reveals that, indeed, the ampli- 
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Nondimensional frequency,W=w*l? 

FIG. 5. Amplitude and phase corrections for U = 0.5. 

tude correction factor increases dramatically when- 
ever W = h/U is approached. Thereafter (for higher 
W) an oscillatory variation with W is established. The 
corresponding phase lag, 0, may exceed 2n, whereby 
the phase info~ation between the wall shear fluc- 
tuation and measured fluctuating transfer rate is prac- 
tically lost. Therefore, the frequency range where 
meaningful information on the wall shear fluctuation 
may be deduced from the transfer rate measurements 
is practically limited to W < 24z/U. The plots of lj.4’ 

Nondimensional frequency,W=w+” 

RG. 6. Amplitude and phase corrections for U = 1. 

**I3 
Nondimensional frequency, W=w*L 

and 0 obtained in this range are summarized in Fig. 
7 for a wide range of U (0 < U < 10). 

It is of interest at this point to refer to the practical 
range of the parameter U. Recently, wall transfer 
probes have been applied in experimental systems of 
falling films, as well as in a variety of two-phase 
sheared film flows [S-15], in an attempt to find the 
phase and magnitude relations between the instan- 
taneous wall shear fluctuations and the corresponding 
passing-by interfacial wave. Clearly, these can be 
deduced provided the probe frequency response as a 
function of U and Wis known and properly accounted 
for. The expected range of the parameter U in wavy 
film flow has been evaluated in ref. [23] and the results 
are summarized in Table 1. 

I 
‘.I 

I I1111111 I I I I*IIIw 
IO 

Nondimensional frequency , W&l? 

FIG. 7. Effect of fluctuation velocity on the probe frequency response. 
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Table 1. Evaluation of U in wavy film flow 

Laminar Nusselt’s film Turbulent falling film [21] Sheared laminar film [22] 

h= 

u* = (vs)‘:’ = (gh)‘** 0.367(vg)“’ Re7’24 [gdh(l +C)l’ ’ 

u’/ v, = 
3.42 1.335 

C Re”’ CRe’!24 $~j$$~“2 sign (::i;i,) 

L+ =L*?!= 
V 

0.95Re”6~~L~ 0.37Rr’~“&+ 

?, > 0. cocurrent downflow: -: < f, < 0, countercurrent downflow ; f, < - 2, cocurrent upflow (g < 0). 

According to Table 1 the value of CJ for a free falling 
film can be estimated by 

turbulent film 

(37) 

where Re is the film Reynolds number, Re = 4r/p(, 

and C the dimensionless wave celerity scaled with 

reference to the average film velocity. (For a laminar 
film and Re N 100, C = 3 and it decreases with Re. 

For Re > lo3 and a turbulent film C N 1 [22].) 
Equation (37) indicates that for a laminar free fall- 

ing film the value of U decreases with increasing the 
film Reynolds number. For sufficiently small probes 

(L iz 1 mm) and Re > 100, Uis not expected to exceed 
the value of 0.25 even with thermal probes (N = 5). 
For mass transfer probes with N 1~ lo’, smaller values 
for U are predicted (U < 0.05), in which case the probe 
frequency response for U # 0 is expected to approxi- 
mately follow that obtained for U = 0. For turbulent 
falling films, however, the value of U is predicted to 

increase with the film Reynolds number. For instance, 
with L = 1 mm, Re = lo“, C = 1 and water film 
(v = 0.01 cm’ s- ‘), U = 2.7 is obtained for a thermal 
probe (N = 5) and iJ = 0.5 for an electrochemical 
probe (N = IO’). Accordingly, the probe frequency 
response demonstrated in Figs. 5 and 6 may be rel- 
evant in these cases. 

For sheared film flow, the value of U depends also 
on the interfacial shear magnitude and direction (see 
Table 1). For film downflow, applying a cocurrent 
interfacial shear, f, > 0, affects lower values of u*/ V, 

compared to those obtained for a free falling film at 

the same Reynolds number. However, with a coun- 
tercurrent interfacial shear, z, < 0, u*/V, (and U) may 
increase dramatically, mainly due to the decrease of 

the wave celerity. Indeed, stability analysis of sheared 
film flow [22] indicates that for ?I < -0.5 the most 
amplified waves are standing waves, whereby C = 0, 
and thus u*/Vw may attain very high values. For 
higher countercurrent interfacial shear (f, < -0.5) 

the most amplified waves correspond to upward trav- 
elling waves (C < 0), for which u*/ V, (and II) attains 
high negative values. Increasing the counter shear 
beyond f, = -213 results in upward film flow, 
whereby both the film flow and the interfacial waves 

travel upward and thus C > 0 again. However, for 

-213 < f, < - 1, u* < 0, and therefore negative 

values of u*/ V, are predicted. With 2, < - 1, u*/V, 
again attains positive values corresponding to co- 

current upward film flow. 
Figure 7 shows the amplitude correction factor and 

the corresponding phase lag obtained for a wide range 

of U. For each value of U the relevant frequency range 
W is restricted to that beyond which either the phase 
information is lost (0 exceeds 2x) or the amplitude 
correction factor starts oscillating. Evidently, with 
increasing U the probe frequency response sig- 
nificantly deteriorates, and the frequency range where 
a meaningful interpretation of measurements is 

feasible diminishes. 
The effect of U i 0 on the probe frequency response 

for a wide range of W is demonstrated in Figs. 8-l 0. 
It is shown that except for very low negative II, the 
amplitude correction factor increases with increasing 
1 Ul over the entire frequency range. Again, beyond 
W N 2n/l C/l both the amplitude correction and the 
phase start oscillating. For sufficiently low frequencies 
the numerical results obtained l/A2 and 0 follows the 
analytic asymptotic expressions derived for W -+ 0 

(equations (30) and (31)). Indeed, the phase lag is 
found to decrease when compared to that predicted 



On the frequency response of wall transfer probes 2449 

(b) sq.fX)f ,/ 

? 
> 

_ 

” IO 

P 

2 
a. 

~ 
.‘.I IO 

NcndimenfioL frequency,~w*LY 

FIG. 8. Amplitude and phase corrections for U = -0.2. 

.I 
NondimensioAol frequency&w*Y 

FIG. 9. Amplitude and phase corrections for U = -0.5. 

for U = 0 and for U < -0.55 a phase lead is obtained 
in the low frequency range. Note that for U = -0.5 
(Fig. 9(b)), although the low frequency range still 
yields a phase lag, a phase lead is predicted for higher 
frequencies (3 < W < IO). 

The numerical results for the amplitude correction 
factor and the phase (lead) obtained for a wide range 
of negative U are shown in Fig. 11. As with positive 
U, the range of frequencies for which the pseudo- 
steady assumption may be expected to be valid is 
shown to be significantly restricted with increasing 

IUI. 

‘1 I IO 
Nondimensional frequency,W=w?? 

FIG. 10. Amplitude and phase corrections for II = - I, 

5. CONCLUDING REMARKS 

Wall transfer probes may be used for measuring 
wall shear fluctuations provided that their time 
response is known. The probe frequency response is 
shown here to depend on the two non-dimensional 
parameters, W = ~D*L+~~’ and U = (u~/V~)(L+~~)‘~~. 

For spatial uniform wall shear fluctuation, V, -+ 
00 and U = 0, the frequency response previously 
predicted by Fortuna and Hanratty (181 and Mao 
and Hanratty [ 191 is recovered. In this case the probe 
cut-off frequency is found to decrease with increas- 
ing N (Prandtl or Schmidt numbers), apparently indi- 
cating an advantage of thermal probes over electro- 
chemical probes. However, as has been already dis- 
cussed by Mao and Hanratty [19], when the restriction 
which evolves from the neglection of the diffusion 
in the axial direction is accounted for (L+ >> N- Ii’), 
larger L.’ is required for smaller N, and consequently 
mass transfer probes tend to be superior to thermal 
probes. 

The effect of a finite propagation velocity of the wall 
shear fluctuation on the probe frequency response 
is demonstrated for a wide range of U. Positive U 
corresponds to a fluctuation which propagates in the 
main flow direction, while U -C 0 stands for situations 
where the wall shear fluctuation propagates counter- 
currently to the main flow. It is shown that with 
increasing ]U] the probe frequency response sig- 
nificantly deteriorates. Moreover, the possibility of 
extracting meaningful info~ation of the wall shear 
fluctuation (while accounting for the probe time 
response) is restricted to W < k/U. Since iJ cc Nil3 
it is advantageous to employ experimental setting of 
larger N, reinforcing the superiority of mass transfer 
probes over thermal probes. 

This is further elucidated with reference to Fig. 12. 
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Nondimensionol frequency, W=~J*L? 

FIG. 11. Countercurrent wall shear fluctuation+ffect of propagation velocity on the probe frequency 
response. 

If we consider, for example, an electrochemical probe 
with N = 103, the minimum probe length for which 
the neglection of axial diffusion may be justified is 
L+. = 14N-‘12 = 0.44 [2]. The corresponding mini- ml” 
mum thermal probe length (N = 5) is L,+,, = 6.26. 
Since N’/3L+2/3 is identical for the two probes 
(N”3L+2’3 = 142’3) the cut-off frequency w+ for a 
specified U = (u*/ VW) (L+/N)“3 is the same. However, 
as (L+/N) ‘I3 is significantly larger for the thermal 
probe the cut-off frequency at a specified u*/V, is 
expected to be larger for the electrochemical probe. 
Figure 12 compares the maximum frequency allowed 
with these two probes if corrections greater than 5% 
on the amplitude are to be avoided (l/A2 < 1.05) as 
a function of u*/VW. It is shown that while for 
u*/V, = 0 the restriction on o+ is the same for the 

“*, r I I I 

‘s - w’( I/A’= 1.05) - - -Stoke’s limit 
---- w+(181=50) 7 W=.IIN’“, N=5 

E - 8,’ 
‘5 _ C’ 
g ___---*’ 

--._ 
-.._ 

= “o!20 $6 ’ ’ ’ ’ ’ I I -12 -6 -4 0 4 8 12 16 20 

Relative flactuotion velocity , u*/V, 

FIG. 12. Cut-off frequency+omparison between thermal 
and electrochemical probes. 

two probes, for u*/ V, # 0 the cut-off frequency of the 
electrochemical probe is larger, indicating a superi- 
ority of the mass transfer probe over the thermal 
probe when larger lu*/V,l are expected. The cut-off 
frequency corresponding to a phase error less than 5” 
is also indicated on Fig. 12. This criterion is generally 
found to be more restrictive than the above amplitude 
criterion, except in the vicinity of negative u*/ V, cor- 
responding to U - -0.5, where relatively large fre- 
quencies may be dictated with minor phase shifts (see 
also Fig. 9 and equation (30)). The electrochemical 
probe is shown to be superior to the thermal 
probe also from the viewpoint of phase correction 
restrictions. 

It is further to be noted that W’ > 0.2 is to be 
avoided with the thermal probe if the Stokes layer 
restriction (W < 0. I 1 N3’2) is considered, while for the 

-20 -16 -12 -6 -4 0 4 6 12 16 20 
Relative floctuotion velocity , u”uV, 

FIG. 13. Cut-off frequency for thermal and electrochemical 
probes of equal size. 
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electrochemical probe this restriction does not impose 
any practical limitation (o+ < 600 for N = lo’, 
L+ = 0.44). 

Complementary to Fig. 12, Fig. 13 compares the 
above cut-off frequencies (for l/A2 -c 1.05 or 
101 < 5”) when the electrochemical probe length is 
increased to L’ = 4.26. It is concluded that the advan- 
tage of the thermal probe over an equal size electro- 
chemical probe is limited to low u*/VW and diminishes 
as u*/ VW increases. For u*/V, < -2 the phase cor- 
rection cut-off frequency is shown to be larger for the 
electrochemical probe. 

Finally, it is to be noted that in practical situations 
non-linear effects may be of importance and therefore 
in utilizing the above (linear) results, nonlinearities 
ought to be considered. 
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2. 

3. 

4. 

5. 

6. 
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REPONSE EN FREQUENCES DES SONDES DE TRANSFERT A LA PAR01 

R&urn&-La reponse temporelle des sondes de transfert en paroi peut affecter de fagon sensible I’in- 
terpretation des phenomenes physiques. La fonction de transfert entre le flux de chaleur ou de masse a la 
surface et le gradient de vitesse a la paroi est analysee dans le domaine de frequence. Une variation spatiale 
induite par la vitesse time de propagation dune tension de cisaillement parietale est consider&e, comme 
cela peut etre rencontre fr~que~ent dans des systemes d’ecoulement diphasiques. L’analyse indique clue 
la reponse est d&tern&&e par deux parametres, la frequence adimensionnelle et la vitesse adimensionnelle 
de fluctuation. Les corrections d’amplitude et de phase qui doivent etre appliquQs a des calculs de modele 
pseudostatique sont calculbes. On trouve que la reponse en frequence se deteriore significativement lorsque 
la fluctuation en paroi diminue. La sensibilite de la reponse a la fluctuation de vitesse diminue quand le 
nombre de Prandtl ou de Schmidt augmente, ce qui indique une superiorit& des sondes electrochimiques 

sur les sondes thermiques. 
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UBER DEN FREQUENZGANG VON SENSOREN FUR DEN WARME- UND 
STOFFTRANSPORT AN DER WAND 

Zusammenfassung-Das Zeitverhalten von Sensoren fiir den Wlrme- oder Stofftransport an der Wand 
kann die Interpretation der beteiligten physikalischen Phanomene wesentlich beeinflussen. Die Uber- 
tragungsfunktion zwischen der Warmestrom- oder Massenstromdichte an der ObertIlche des Sensors 
und der Schubspannung an der Wand wird im Frequenzbereich analysiert. Raumliche Veranderungen 
werden beriicksichtigt, die durch die endliche Ausbreitungsgeschwindigkeit einer fluktuierenden Wandschub- 
spannung hervorgerufen und haufig in verschiedenen Zweiphasenstromungs-Systemen angetroffen werden. 
Die Untersuchung zeigt, daD die Antwort durch zwei Parameter bestimmt wird-die dimensionslose 
Frequenz und die dimensionslose Ausbreitungsgeschwindigkeit. Die Amplituden- und Phasenkorrekturen, 
die bei pseudostationaren Modellrechnungen angewandt werden mussen, werden numerisch berechnet. Es 
zeigt sich, daO der Frequenzgang des Sensors bei einem Abnehmen der Fluktuation der Wandschub- 
spannung wesentlich schlechter wird. Die Empfindlichkeit der Antwort gegeniiber der Fluktuations- 
geschwindigkeit wird geringer, wenn die Prandtl- oder die Schmidt-Zahl steigt. Dies zeigt eine Uber- 

legenheit elektro-chemischer Sensoren gegeniiber thermischen. 

gACTOTHAII XAPAKTEPIICTHKA 30HAOB jJJIA MSMEPEHWI I’IEPEHOCA HA 
CTEHKE 

AnmTaqun-BpeMeHHan XapaKTepHcTHKa 30HAOB ,Luln H3MepeHan nepeHoca Ha CTeHKe MO;KeT CylLtecT- 

BeHHo BnwITb Ha &iHTepnpma~mpaccMaTpHsaeMbIx~H3Hw-C~H~rBneHafi. B XXTOTIiOfi o6nacm aHa- 

na3spyeTcK cm3b hte;rcny n_moTHocrbw TennoBoro wui MaCconoro noToKa xia noBepxmcrkf 3owa if 

CDBHTOM Ha CTeHKe. kkC,E~yeTCK npOCTpaHCTBeHHOe 83MeHeHHe, BbI3BaHHOe KOHeVHOii CKOpOCTbH) 

pacnpocrpaHeHHn &IyKryapyEomero cnmira HaCTeHKe,YTO saCTo HMeeT Me‘70 B pa3JIH'fHblXcECTeMax 

nByX@a3HbIX T~'E~HH~~.AHLUIEI~ nOKa3bIBaeT,'iTO 'IaCTOTHaP XapaKTepHCTHKa On~JleJlXeTCK LWyMK napa- 

MeTpaMH: 6e3pa3MepHOir 'IaCTOTOii H 6e3pa3MepHoii CKOpOCTbm @lyKTyaUUU. ~HCJIWHO paCCWiTbI- 

BamTcK nonpaeKti Ha aMnwnHTy.wble B @a3onbIe wzKaxcemin, KOTOpbIe CneHyeT IIpHMeHITb Hptf 
‘HiCneHHbIX paCYeTaX Ha OCHOIH! KBa3HCTaHHOHapHbIX MOLWI&i. HaiineHo, ST0 CO CHHLSeHHeM CKOPOCTEI 

+IyKTj’WHii CLIBHRi Ha CTCHKe ‘IaCTOTHall XapaKTeptiCTHKa 30Hlla 3HaWiTeJIbHO yX)‘llIlI%TC% ~j’BCTB%i- 

TfZbHOCTb ‘iaCTOTHOfi XapaKTepHCTIiKH K CKOpOCTH @IyKTyaUHii YMeHblLlaeTCX C POCTOM %iCeJl 

&aHnTJtK HJII( IhWTa, YTO CBHJleTeJlbCTB)‘~ 0 IIPe.HMyIuETBe 3JleKT~XWMHSeCKOTO 3OHAHpOBaHHK 

II’Zpen TeIIJIOBbIM. 


